High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.
نویسندگان
چکیده
Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.
منابع مشابه
Regarding the Amazing Choreography of Clathrin Coats
The growth of contemporary cell biology is due in large part to technological advances. In the 1950s, electron micrographs of thin sections first provided unrivaled in situ views of the delicate intracellular architecture and fine structure of organelles, whereas new subcellular fractionation methods gave access to various biochemical components—especially proteins—enriched in different cellula...
متن کاملIsolation and Use of Mammalian Cell Nuclei
Fractionation of cells into their subcellular components has long been a central approach in cell biology. Subcellular fractionation techniques have been used widely to study structure and function of organelles and subcellular compartments, as well as to examine the location, processing, and trafficking of molecular components. The object of most subcellular fractionation procedures is to obta...
متن کاملImplications for Subcellular Fractionation in Proteomics
Functional proteome analysis is not restricted to the sequence information but includes the broad spectrum of structural modifications and quantitative changes of proteins to which they are subjected in different tissues and cell organelles and during the development of an organism. Cell biology has provided the means required for the analysis of the composition and properties of purified cellu...
متن کاملBacteria sorting by field-flow fractionation. Application to whole-cell Escherichia coil vaccine strains.
Sorting and quantification of deactivated bacteria is an important way of quality control for whole-cell bacterial vaccines. In general, surface features of deactivated bacteria used for whole-cell bacterial vaccines affect the immunoresponse to bacteria-associated antigens. Enumeration of bacteria is also an important process development parameter for these vaccines. Field-flow fractionation (...
متن کاملEvaluation of multiplexed hollow fiber flow field-flow fractionation for semi-preparative purposes.
A multiplexed hollow fiber flow field-flow fractionation (MxHF5) is introduced to increase throughput of an HF5 channel system for semi-preparative purposes. HF5, a cylindrical version of the flow field-flow fractionation (FlFFF) operated with a porous, hollow fiber membrane by controlling the ratio of radial and axial flow rates, is capable of fractionating proteins, cells, and macromolecules ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 12 شماره
صفحات -
تاریخ انتشار 2015